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Abstract. In this paper, we address the problem of face video retrieval.
Given one face video of a person as query, we search the database and
return the most relevant face videos, i.e., ones have same class label with
the query. Such problem is of great challenge. For one thing, faces in
videos have large intra-class variations. For another, it is a retrieval task
which has high request on efficiency of space and time. To handle such
challenges, this paper proposes a novel Deep Video Code (DVC ) method
which encodes face videos into compact binary codes. Specifically, we
devise a multi-branch CNN architecture that takes face videos as train-
ing inputs, models each of them as a unified representation by temporal
feature pooling operation, and finally projects the high-dimensional rep-
resentations into Hamming space to generate a single binary code for
each video as output, where distance of dissimilar pairs is larger than
that of similar pairs by a margin. To this end, a smooth upper bound
on triplet loss function which can avoid bad local optimal solution is
elaborately designed to preserve relative similarity among face videos in
the output space. Extensive experiments with comparison to the state-
of-the-arts verify the effectiveness of our method.

1 Introduction

Face video retrieval in general is to retrieve shots containing a particular person
given one video clip of him/her [1]. As depicted in Fig. 1, given one face clip as
query, we search the database and return the most relevant face clips according
to their distance to the query. It is a promising research area with wide range
of applications, such as: ‘intelligent fast-forwards’ - where the video jumps to
the next shot containing the specific actor; retrieval of all the shots containing
a particular family member from thousands of short videos; and locating and
tracking criminal suspects from masses of surveillance videos [2].

While face video retrieval is in great demand, it is still of great challenge. The
video data usually tends to have unconstrained recording environment, which
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Fig. 1. Illustration of face video retrieval and the motivation of our method. Q, A, B
and C denote face clips and the colors around them represent their class labels. Given
the query Q, we search the database to find the most relevant face clips according to
their distance to Q. It is observed that Q, A, B and C have large intra and inter class
variations caused by illumination (B), pose (Q), expressions (C), occlusion (A), etc.
We aim to project them into a common Hamming space where distance of dissimilar
pairs is larger than that of similar pairs by a margin.

leads to large intra-class variations caused by illumination, pose, expressions,
resolution and occlusion, as is shown in Fig. 1. Fortunately, videos provide mul-
tiple consecutive faces of one person and each frame forms a part of the person’s
story. One can mine complementary information from each frame to obtain a
comprehensive representation for the video. However, modeling face video as a
whole is nontrivial. To address this issue, a typical class of video-based face recog-
nition methods [3–10] put the sequential dynamic information of video aside, and
simply treat the video as a set of images (i.e. frames) and then formulate the
problem as image set classification. While encouraging performance has been
gained in such works, most of them utilize hand-crafted features which cannot
well capture the semantic information and are hard to deal with the challeng-
ing intra-class variations. To overcome such limitations, we devise a multi-branch
CNN architecture to model face video as a whole by exploiting the convolutional
temporal feature pooling scheme which has been proved effective and efficient for
video classification task [11]. Another challenge of face video retrieval task is the
demand for low memory cost and efficient distance calculation, especially in large
scale data scenarios. Obviously, high-dimensional representation of the video is
not the best choice. Here we resort to hashing method which is a popular solution
for approximate nearest neighbor search. In general, hashing is an approach of
transforming the data item to a low-dimensional representation, or equivalently
a short code consisting of a sequence of bits [12]. Therefore, we hope the designed
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Fig. 2. Framework of the proposed DVC method. We integrate frame-level feature
extraction, video-level representation and binary encoding in a unified framework by
designing an end-to-end multi-branch CNN architecture. Taking face videos with their
class labels as training inputs, DVC first extracts convolutional features for each frame
and then utilizes temporal feature pooling on all frames belonging to the same video
to produce video-level representation. Finally the fully connected layers project the
feature representations of all face videos from the high-dimensional Euclidean space
into a much lower-dimensional Hamming space, using the elaborately designed upper
bounded triplet loss function.

CNN architecture can further project the high-dimensional representation into
compact binary code, which we name as Deep Video Code (DVC ), to satisfy the
aforementioned demand with ease in an end-to-end learning manner.

Figure 2 shows the framework of our method. The multi-branch network takes
face videos instead of face images as training inputs. Then each branch (weights
of branches are shared) of the network extracts convolutional features for each
frame simultaneously. In order to further obtain a unified representation for each
video, we regard the convolution filter as a local concept classifier or detector
[13] and pool the classification or detection results of all frames temporally to
mine complementary information of frames within one video. With such rep-
resentation, we further elaborately design a triplet loss function which aims to
separate the positive sample pair (a pair of samples coming from the same class)
from the negative pair by a distance margin to generate a single binary code for
each video as output. To avoid converging to a bad local optimum, the gradients
of the loss function should descend stably. To this end, we turn to optimize a
smooth upper bound on the loss function inspired by a recent metric learning
method [14]. Extensive experiments with comparison to the state-of-the-arts on
two challenging TV-Series datasets released in [15] verify the effectiveness of our
method on face video retrieval task.

The rest of this paper is organized as follows: We start with related works to
our method in Sect. 2. Section 3 describes DVC in detail. Section 4 evaluates the
proposed method with comparison to the state-of-the-arts extensively. Section 5
ends the paper with conclusions.
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2 Related Work

As introduced above, our method treats face video as a whole and aims to encode
high-dimensional video representations into compact binary codes. Hence, in this
section, we give a brief review of related works including face video retrieval,
image set and video analysis, and hashing methods.

Face Video Retrieval. More and more works on face video retrieval have been
published in recent years [1,2,15–20]. Arandjelović and Zisserman [16,17] built
an end-to-end system to retrieve shots in feature-length films. They proposed a
cascade of processing steps to normalize the effects of the changing image envi-
ronment and use the signature image to represent face shot. However, they did
not make full use of information provided by multiple frames. To take advan-
tage of rich information of videos, [2] developed a video shot retrieval system
which represents each face video as distributions of histograms and measures
them by chi-square distance. These early works utilize high-dimensional fea-
tures which are not appropriate for efficient retrieval task. [19] is probably the
first work which proposed to compress face video into compact binary code by
means of learning to hash. [15] further improved the video modeling procedure
by representing face video as the set covariance matrix with Fisher Vector as
frame feature. [20] proposed a hashing method across Euclidean space and Rie-
mannian manifold to solve the problem of face video retrieval with image query.
While certain successes have been achieved in these works, they make little
effort to frame-level feature extraction by merely relying on hand-crafted fea-
tures, which are unfavorable of handling realistic challenging image variations.
[21] thus made an early attempt to employ a typical standard deep CNN net-
work to extract frame-level features and hashing codes separately for each single
frame. Since their learning totally ignores the correlation information among
consecutive frames and the resulting frame-level hashing codes need to be fur-
ther aggregated to form the final video-level hashing code, the ordinary CNN
network framework seems not an optimal solution to efficient video hashing.

Image Set and Video Analysis. Recent years have witnessed an increasing
works on video-based face recognition, and among them, a typical class of meth-
ods [3–10] simply treat the problem as image set (formed by frames) classification
and focus on modeling image set with different representations and measuring
their similarities. However, the frame-level features they use lack strong repre-
sentation power. More recently, deep CNN based methods for video classification
[11,13,22,23], event detection [13] and pose estimation [24] have achieved out-
standing performance compared with conventional hand-crafted features based
methods. [22,23] proposed to utilize 3D CNN to capture spatial appearance
and temporal motion information of video sequence. [13] discovered that sim-
ply aggregating the frame-level latent concept descriptors can achieve promising
performance. However, the extraction and aggregation of frame-level descriptors
are separated which may degrade the performance. To tackle this problem, [11]
experimented with different frame-level feature aggregation methods in end-to-
end CNNs and found that the performance of simple temporal feature pooling
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has been quite comparable with other more complex alternatives, verifying the
usefulness of joint learning of image representation and feature aggregation.

Hashing Methods. Hashing is widely applied in retrieval area especially for
large-scale approximate nearest neighbor (ANN) search problem. Compared with
retrieval methods using real-valued features such as [25–27], hashing is more
space and time efficient. In early years, studies mainly focus on data-independent
hashing methods, such as a family of methods known as Locality Sensitive Hash-
ing (LSH) [28] and random matrix factorization based method [10]. However,
LSH methods usually require long codes to achieve satisfactory performance.
To overcome this limitation, data-dependent hashing methods attempt to learn
similarity-preserving compact binary codes using training data. Such methods
can be further divided into unsupervised [29–31] and (semi-)supervised methods
[31–44]. Since unsupervised methods cannot take advantage of label information,
their performances are usually inferior to supervised methods. In supervised
methods, usually an objective function in the form of point-wise [41], pairwise
[32–36,39,42] or triplet [37,38,40,43–45] loss is designed. Compared with point-
wise and pairwise loss, the objective of triplet loss is to preserve rank order among
samples which is very well suited to the preservation of semantic similarity on
challenging datasets [45]. In light of the recent progress of deep CNN network in
learning robust image representation, there are also growing interests in devel-
oping hashing methods using CNN architecture for traditional image retrieval
task, such as DLBHC [41] and DNNH [43]. However, as noted in [14], when using
the triplet loss function in deep CNN network, it is better to make use of “diffi-
cult” triplets and straightforwardly optimizing such triplet loss with mini-batch
gradient descent algorithm would probably lead to a bad local optimum [46,47].
This observation encourages us to elaborately optimize a smooth upper bound
on the triplet loss function in our devised multi-branch CNN architecture, which
aims to preserve relative similarity among face videos in the output Hamming
space and simultaneously avoids bad local optimal solution.

3 Approach

Our goal is to learn compact binary codes for face videos such that: (a) each
face video should be treated as a whole, i.e., we should learn a single binary
code for each video; (b) the binary codes should be similarity-preserving, i.e.,
the Hamming distance between similar face videos should be smaller than that
between dissimilar face videos by a margin. To fulfill the task, as demonstrated in
Fig. 2, our method mainly involves two steps: (1) video modeling, which extracts
frame-level features and aggregates them for single video-level representation,
and (2) binary encoding, which learns the optimal binary codes for face videos
under the designed upper bounded triplet loss function.

3.1 Video Modeling

In this step, what we need is to learn a powerful representation for each face video
with the help of CNN. A straightforward method is to train a CNN model first,
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extract CNN features for each frame with the model, and then aggregate them into
a unified representation (e.g. by averaging features of all frames). However, such
method separates frame-level feature extraction and video-level representation,
which may lead to poor coupling between the two steps and thus poor performance.

Another solution widely used in video modeling with CNNs is 3D Convolu-
tion Neural Network (3D CNN). To cope with video data, the 3D CNN takes
the motion variation in temporal dimension into consideration. In [22], the 3D
convolution is implemented by stacking image frames to construct a cube and
then convolving the 3D kernels on the cube. Since 3D CNN connects each feature
map to multiple contiguous feature maps (frames for the first convolution layer)
in the previous layer, it has the power of making use of more frames’ information
in videos. However, the goal of 3D CNN is to capture motion information from
frame sequences and appearance information from each frame simultaneously,
which has high request on the network. Consequently learning of both motion
and appearance information is degraded. As far as the face video retrieval task
concerns, the temporal motion information among frames contributes little to
distinguishing one face video from another for that we care more about the
appearance of the faces in video than their heads’ motion. Therefore 3D CNN
is not the best choice for face video modeling.

For the sake of extracting appearance information and modeling the video as
a whole simultaneously, we devise the multi-branch CNN architecture, as illus-
trated in Fig. 2. Let F = [f1, f2, ..., fn] be a face video with n frames, where
fi denotes the i-th frame. We first propagate each frame through the stacked
convolution layers, pooling layers and ReLU [48] non-linear activation layers in
one of the multiple branches. By doing this, the CNN features di ∈ R

m for
each frame are produced. Next, to mine complementary information from these
frame-level CNN activations, we adopt the temporal feature pooling methods.
Temporal feature pooling has been extensively used for video classification, the
resulting vector of which can be used to make video-level predictions [11]. Gen-
erally speaking, faces in a video have large variations. Each of them may only
carry partial but complementary information. Specifically, the convolution ker-
nel can be regarded as a local concept classifier or detector. While some concepts
only exist on one or a few faces in the video, the detectors will only have large
responses on some of these faces. By using back-propagation algorithm during
training the CNN, gradients coming from the top layers help learn useful local
concept detectors, while allowing the network to decide which input frame is rel-
evant to the video representation. In this paper, we test two kinds of temporal
feature pooling, i.e., the max-pooling and average pooling.

Until now, we have obtained the m-dimensional vector which serves as the
real-valued representation of the face video. In the following we will continue
to prorogate the network activations to encode the representation into compact
and similarity-preserving binary codes.

3.2 Binary Encoding

We can obtain a representation for each face video using the temporal feature
pooling as introduced above. However, such representation suffers from high
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dimensionality which leads to high space and time complexity when applied to
retrieval task straightforwardly. Besides, we still need to devise an objective func-
tion to supervise the learning of video representation. To address these problems,
we propose a hashing method with triplet loss function. By doing this, the high-
dimensional representation is further projected into a much lower-dimensional
Hamming space.

To guarantee the similarity-preserving power of learned hashing functions,
several kinds of objectives are proposed. Among them, the triplet ranking loss
based hash learning methods are very promising because the objective of triplet
constraints is to preserve relative rank order among samples, which is agree with
the objective of retrieval task. The triplet constraints can be described as the
form: “image i is more similar to image j than to image k” [43]. When the
dataset is challenging, such constraints are easier to be satisfied than point-
wise or pairwise constraints. Apart from that, such form of triplet-based relative
similarities are easier to be constructed than others (e.g., for two images with
multiple attributes/tags, simply count the number of common attributes/tags
as the similarity metric between them). For better understanding of the triplet
ranking loss in hash learning, let i, j, k be three samples and i is more similar to
j than to k, our goal is to map these three samples into Hamming space where
their relative similarity or distance can be well preserved, as illustrated in Fig. 1.
Otherwise, punishment should be put on them, defined by:

Ji,j,k = max(0, α + Dh(bi,bj) − Dh(bi,bk)).
s.t. bi,bj ,bk ∈ {0, 1}c (1)

where Dh(·) denotes the Hamming distance between two binary vectors and
α > 0 is a margin threshold parameter. bi, bj and bk are the c-bit binary codes
of sample i, j and k, respectively.

Generally we use the gradient descent algorithm with mini-batch to train
the CNN with the aforementioned triplet ranking loss. In this case, triplets are
constructed at random. Therefore, a substantial part of them contribute little to
the convergence of the network during each iteration as they already meet the
triplet constraint as described in Eq. (1) or their loss is quite small. To cope with
this problem, our approach tends to make use of “difficult” triplets, i.e., given a
pair of similar samples, we actively find the dissimilar neighbor closest to them
in current learned Hamming space. Based on this idea, we rewrite Eq. (1) and
give the overall loss function per batch as:

J =
1

2| ̂P|
∑

(i,j)∈ ̂P
max(0, Ji,j),

Ji,j = max
(

max
(i,k)∈ ̂N

{α − Dh(bi,bk)},

max
(j,l)∈ ̂N

{α − Dh(bj ,bl)}
)

+ Dh(bi,bj).

s.t. bi,bj ,bk,bl ∈ {0, 1}c

(2)
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where ̂P and ̂N are the set of positive and negative pairs (i.e., similar and
dissimilar pairs) in the training mini-batch, respectively. Note that here we allow
both sample i and j play the role of anchor point in the triplet structure in order
to make full use of samples in the batch.

However, such loss function is non smooth, which causes the network converge
unstably and is very likely to get into a bad local optimum. Inspired by [14], we
turn to optimize a smooth upper bound on Eq. (2), defined as:

J̃ =
1

2| ̂P|
∑

(i,j)∈ ̂P
max(0, J̃i,j),

J̃i,j = log
(

∑

(i,k)∈ ̂N
exp{α − Dh(bi,bk)}

+
∑

(j,l)∈ ̂N
exp{α − Dh(bj ,bl)}

)

+ Dh(bi,bj).

s.t. bi,bj ,bk,bl ∈ {0, 1}c

(3)

From Eq. (3), we can see that the triplet loss J̃i,j takes all dissimilar pairs
into consideration which makes the overall loss J̃ for each batch more smooth. At
the same time, to make use of “difficult” triplets, the exp operator strengthens
the contributions of such “difficult” triplets while weakens other “easy” ones in
summation terms.

Unfortunately, it is infeasible to optimize Eq. (3) directly because the binary
constraints require discretizing the real-valued output of the network (e.g. with
signum function) and will make it intractable to train the network with back
propagation algorithm. For ease of optimization, we adopt the strategy in [43],
i.e., replace the Hamming distance Dh(·) with square of Euclidean distance and
relax the binary constraints on b to range constraints. We formulate the relaxed
overall loss function as follows:

J̃ =
1

2| ̂P|
∑

(i,j)∈ ̂P
max(0, J̃i,j),

J̃i,j = log
(

∑

(i,k)∈ ̂N
exp{α − D2

e(bi,bk)}

+
∑

(j,l)∈ ̂N
exp{α − D2

e(bj ,bl)}
)

+ D2
e(bi,bj).

s.t. bi,bj ,bk,bl ∈ (0, 1)c

(4)

where De denotes the Euclidean distance and the binary constraints on bi, bj ,
bk and bl are relaxed to range constraints of 0 to 1.
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With Eq. (4), back-propagation algorithm with mini-batch gradient descent
method is applied to train the network. Specifically, we give the gradients of
Eq. (4) with respect to the relaxed binary vectors as follows:

∂J̃

∂D2
e(bi,bj)

=
1

2| ̂P|1[J̃i,j > 0]

∂J̃

∂D2
e(bi,bk)

=
1

2| ̂P|1[J̃i,j > 0]
− exp{α − D2

e(bi,bk)}
exp{J̃i,j − D2

e(bi,bj)}
∂J̃

∂D2
e(bj ,bl)

=
1

2| ̂P|1[J̃i,j > 0]
− exp{α − D2

e(bj ,bl)}
exp{J̃i,j − D2

e(bi,bj)}
∂D2

e(bi,bj)
∂bi

= 2(bi − bj),
∂D2

e(bi,bk)
∂bi

= 2(bi − bk)

∂D2
e(bi,bj)
∂bj

= 2(bj − bi),
∂D2

e(bj ,bl)
∂bj

= 2(bj − bl)

∂D2
e(bi,bk)
∂bk

= 2(bk − bi),
∂D2

e(bj ,bl)
∂bl

= 2(bl − bj)

(5)

where, 1[·] is the indicator function which equals 1 if the expression in the bracket
is true and 0 otherwise. As is shown in Eq. (5), the gradients of each iteration
contain all negative pairs’ information which makes the optimization more stable.

With these computed gradients over mini-batches, the rest of back-
propagation can be run in standard manner.

3.3 Implementation Details

Network parameters: We implement our DVC method with Caffe platform1

[49]. Due to memory limitation, we resize each face image to 100×100. In frame-
level feature extraction procedure, each branch consists of three convolution-
pooling layers. The convolution layers include 32, 32 and 64 5 × 5 filters with
stride 1 respectively, and the size of pooling window is 3 × 3 with stride 2. Such
branch is duplicated multiple times (both the configuration and the weights are
shared) and they work side by side. Following the frame-level feature extraction,
we implement the temporal feature pooling layer using the Eltwise layer provided
by Caffe. Next is two fully connected layers for transforming the high-dimensional
representation to low-dimensional real-valued vector. The first fully connected
layer contains 500 nodes and the second contains c nodes, where c is the length
of the final binary codes. To satisfy the range constraints, we append a sigmoid
layer after the last fully connected layer. Moreover, all the convolution layers and
the first fully connected layer are equipped with the ReLU activation function.

During training, the weights of each layer were initialized with “Xavier”
method [50]. We set batch size to 200, momentum to 0.9 and weight decay to
0.004. We adopt the fixed learning rate policy with 10−4 and train the network
with 150, 000 iterations. The margin α in Eq. (4) is empirically set to 1.
1 The source code of DVC is available at http://vipl.ict.ac.cn/resources/codes.

http://vipl.ict.ac.cn/resources/codes
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Training methodology: To speed up the converging of the network, we gen-
erate triplet samples online as [14] does, i.e., the input of network is not in
triplet form but in point-wise form. Triplets are constructed from each batch at
loss layer according to their class labels. By doing this, much more triplets can
be utilized during each iteration. As a result, the network will converge faster
and the structure of the whole network can be simplified. Therefore the com-
putational resources and storage space can be used more efficiently. However,
when distribution of different classes in dataset is uneven, if we draw samples
randomly, we may fail to construct a triplet in a mini-batch. Worse still, train-
ing in such manner would inevitably cause bad result where classes with large
number of samples are trained well and the others may be disappointing. To
make sure that face videos of each class distribute uniformly in each batch, we
randomly select a few (e.g. 10) class labels first, and then load same number of
face videos for each selected class. With such processing, the number of triplets
in each batch can be guaranteed and the uneven distribution of different classes
as will be introduced in Sect. 4.1 can be alleviated.

Another trick for training DVC is the use of finetuning. Since the frame-
level feature extraction unit of the designed CNN consists of multiple dupli-
cated branches and the convolution operations are time-consuming, training the
multi-branch network straightforwardly is not recommended. Hence we turn to
first train the network thoroughly with single frame as input (only preserve one
branch in frame-level feature extraction unit). Then we expand the single-branch
model to the multi-branch model. In this way, we achieve significant speedup
compared to training it from scratch. In a similar way, as networks with differ-
ent code lengths share the same configurations except the last fully connected
layer, we train the long code network by finetuning it with short code network.
Due to the limited space, evaluation of the effectiveness of finetuning policy on
training DVC is introduced in our supplementary materials.

4 Experiments

In this section, we first evaluate the power of different CNN architectures dis-
cussed in Sect. 3.1 for video modeling. Then comparison with state-of-the-art
hashing methods is conducted to illustrate the effectiveness of the proposed
method.

4.1 Datasets and Evaluation Protocols

We carry face video retrieval experiments on the ICT-TV dataset [15]. ICT-TV
dataset contains two face video collections clipped from two popular American
TV-Series, i.e., the Big Bang Theory (BBT) and Prison Break (PB). These two
TV-Series are quite different in their filming style and therefore pose different
challenges. BBT is a sitcom and most stories take place indoors. Each episode
contains 5–8 characters. By contrast, many scenes of PB are taken outdoors with
a main cast list around 19 characters. Consequently face videos from PB have
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larger variation of illumination. All the face videos are extracted from the whole
first season of each TV-Series, i.e., 17 episodes of BBT and 22 episodes of PB.
Each frame of face video has been cropped to the size of 150×150. The numbers
of face videos of these two datasets are 4667 and 9435 respectively. Actually
the numbers of face videos of different characters are quite different from each
other, which range from 11 to 1528 and 49 to 1965 per character in BBT and
PB respectively. To tackle this problem, we adopt the training methodology
as introduced in Sect. 3.3 (due to the limited space, the distribution of face
videos per character and validation of the effectiveness of the trick we adopt can
be found in the supplementary materials). We use the extracted block discrete
cosine transformation features of face images as used in [19] for all traditional
methods, i.e., methods using hand-crafted features.

We abandon the “Unknown” class in both collections, then randomly select
2
3 of each character’s face videos for training and leave the rest for evaluating
the retrieval performance. In this way, we obtain 2971 and 5001 face videos for
training, and leave 1487 and 2499 face videos for evaluation on BBT and PB
respectively. We will introduce how to use the split for different methods in
Sects. 4.2 and 4.3 in detail.

Following previous works [19,21,43], we adopt the mean Average Precision
(mAP) and precision recall curves calculated among the whole test set of each
dataset for quantitative evaluation.

4.2 Evaluation of Video Modeling

In this part, we validate the effectiveness of the proposed temporal feature pool-
ing. We mainly evaluate different video modeling solutions discussed in Sect. 3.1,
i.e., single-frame model, 3D CNN model, temporal max-pooling model and tem-
poral average pooling model. We denote them as Single, 3DCNN, T-max and
T-avg respectively for convenience. The CNN architectures of the T-max, T-avg
and Single have been discussed in Sect. 3.3. 3DCNN ’s network configuration is
same with Single except that the convolution kernels of the first convolution
layer are 3 × 3 × 3T where T is the number of frames of a face video, each
frame has 3 channels and totally 3T channels in temporal dimension. We can
observe that the scale of training set on both dataset is too small to train deep
CNNs from scratch. To augment data, we fix the number of frames for each face
videos to 10 and segment each face video into multiple sub-videos with such size.
Specifically, we slide the segment window 5 frames after each segmentation until
the window gets to the last frame. By doing this, we expand the training set
from 2971 and 5001 to 25590 and 40941, and the test set from 1487 and 2499 to
12735 and 20357 for BBT and PB respectively. The expanded data is supplied
to train 3DCNN, T-max and T-avg. For Single network, all frames of all face
videos in training set are used for training. To represent each face video as a
whole, we simply average the representations of the segmented sub-videos or all
frames belonging to that face video.

The retrieval mAP of different models are listed in Table 1. From this table, we
can reach three conclusions: (1) 3DCNN performs worst both on BBT and PB.
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Table 1. Comparison of retrieval mAP of different video modeling methods on BBT
and PB with 12-bit binary codes.

BBT PB

3DCNN Single T-avg T-max 3DCNN Single T-avg T-max

mAP 0.9759 0.9853 0.9791 0.9808 0.8573 0.9547 0.9552 0.9590

The reason is that 3DCNN aims to learn both spatial and temporal information,
which has high request on the network. Besides, it mixes appearance informa-
tion of multiple frames together in the first convolution layer which causes the
network fail to capture the appearance information of each frame in the lat-
ter layers. Therefore the appearance information of face is not learned well.
However, the performance of Single method demonstrates the importance of
appearance information for face video retrieval. In spite of local motion informa-
tion, just extracting the appearance information from each single face by Single
method can achieve promising even best (on BBT) performance. (2) T-max and
T-avg achieve comparable performances with the Single method. The reason why
T-max and T-avg perform slight worse than Single on BBT is that BBT only
has 25590 sub-videos while the number of frames is 136788 for training, and the
numbers of network weights in Single, T-avg and T-max are equal. Therefore
the sub-videos in training set of BBT for T-max and T-avg may be not enough.
To verify the assumption, we enlarge the training set to 30529 (reduce test set
correspondingly) and find that mAP of T-max increases to 0.9917 which outper-
forms Single with 0.9892. Besides, the Single method needs more computation
of projection through fully connected layers for all frames. T-max and T-avg
methods only need to project sub-videos into binary codes, the computation
cost of which is much smaller than the former. For PB, sub-videos for training
is about 1.6 times as many as that of BBT which is enough to train T-max and
T-avg. Moreover, samples in PB have larger intra and inter class variations than
BBT. Hence information carried by different frames is more complementary and
the temporal feature pooling operation can mine such information to represent
face videos more stably. Therefore, T-max and T-avg tend to outperform single
on PB. (3) T-max performs better than T-avg both on BBT and PB. Proceed
from the procedure of convolution operation, each convolutional filter can be
regarded as a local concept classifier or detector. When appearance of frames
in a video changes fiercely, some local concepts may only exist on one of those
faces. Thus, it is better to use the largest activation of convolutional results than
the average one.

4.3 Comparison with the State-of-the-Art

Comparative methods: We compare our DVC with LSH [28], SH [29], BRE
[32], ITQ [31], CCA-ITQ [31], MLH [34], KSH [35], CVC [19], DLBHC [41] and
DNNH [43]. Strictly speaking, the ten compared hashing methods except CVC
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are not specifically designed for face video retrieval task. To conduct face video
retrieval experiments on these methods, we trained them by treating a face image
as a sample and finally all the frame-level binary representations are fused by
hard-voting method as the representation of the face video. For fair comparison,
DLBHC and DNNH used the same network structure, as the Single network
in Sect. 4.2. Note that in this case, the DNNH actually is the fully connected
version described in [43]. For evaluating the loss function, we also implement the
Single version of DVC, which is named as DVC-s. The T-max version of DVC
is named as DVC-m.

Training set: If possible, we would like to use the whole training data to train
all methods. However, MLH and KSH cost too much memory. Hence we had
to randomly select 5K and 10K frames from all training face videos for MLH
and KSH respectively, which costs more than 8 GB of memory. Parameters of
the compared methods were all set based on the authors’ suggestions in their
original publications.

Results: Table 2 shows the retrieval performance comparison and Fig. 3 gives
the precision recall curves on two datasets with 48-bit binary codes (more results
with other code lengths can be found in supplementary materials). In general,
supervised hashing methods perform better than unsupervised methods, validat-
ing the importance of label information for learning similarity-preserving Ham-
ming space. In addition, those CNN-based methods outperform conventional
hashing methods by a large margin, demonstrating the advantage of joint feature
learning and binary coding. Apart from that, we also attempted to train some
conventional hashing methods with CNN features, their performances improved

Table 2. Comparison of retrieval mAP of our DVC method and the other hashing
methods on BBT and PB.

Method BBT PB

12-bit 24-bit 36-bit 48-bit 12-bit 24-bit 36-bit 48-bit

LSH [28] 0.2778 0.3062 0.3171 0.3679 0.1259 0.1360 0.1375 0.1412

SH [29] 0.3745 0.3652 0.3473 0.3329 0.1403 0.1496 0.1504 0.1504

ITQ [31] 0.4771 0.4928 0.4924 0.4968 0.1414 0.1525 0.1563 0.1608

CCA-ITQ [31] 0.7159 0.8141 0.8406 0.8547 0.1819 0.2312 0.2595 0.2814

BRE [32] 0.4275 0.4810 0.4869 0.4860 0.1423 0.1468 0.1501 0.1510

MLH [34] 0.7670 0.8058 0.8141 0.8402 0.2294 0.2325 0.2550 0.2783

KSH [35] 0.8819 0.8830 0.8814 0.8856 0.3405 0.3840 0.3993 0.4086

CVC [19] 0.7784 0.8121 0.8158 0.8166 0.2767 0.3314 0.3554 0.3648

DLBHC [41] 0.9870 0.9914 0.9922 0.9922 0.9476 0.9498 0.9521 0.9602

DNNH [43] 0.9878 0.9884 0.9927 0.9909 0.9262 0.9306 0.9335 0.9262

DVC-s 0.9853 0.9933 0.9927 0.9941 0.9547 0.9663 0.9785 0.9788

DVC-m 0.9808 0.9926 0.9917 0.9915 0.9590 0.9707 0.9741 0.9727
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Fig. 3. Comparison with the state-of-the art hash learning methods with precision
recall curves on two databases.

significantly, but still inferior to our DVC. Detailed results are introduced in
supplementary materials.

It is observed that performances of CNN-based methods on BBT are almost
the same because face videos in BBT have small variations. However, when it
comes to PB which is more challenging than BBT as described in Sect. 4.1,
the performance gap between our method and others especially DNNH becomes
larger. We attribute it to the designed loss functions and video representation
policies. On one hand, DVC is based on triplet constraints, which aims to opti-
mize the relative rank order among samples. Hence, DVC is very well suited
to the preservation of semantic similarity on challenging datasets. Besides, we
optimize the smooth upper bound on triplet loss function which biases towards
triplets with large loss and simultaneously leads the network to converge stably.
However, DLBHC aims to embed label information into binary codes with point-
wise loss which neglects the relative similarity among samples, thus encoding
dissimilar images to similar codes would not be punished as long as the classifica-
tion accuracy is unaffected. Though DNNH is based on triplet constraints, most
triplets in a batch contribute little to the convergence of the network for that
they already meet the constraints and they overwhelm triplets that violate the
constraints. Therefore, our DVC-s outperforms them. On the other hand, DVC-
m utilizes the temporal max-pooling network to represent face video which has
the ability of making use of more complementary information, while DLBHC,
DNNH and DVC-s simply average all frame-level binary codes, the final video
code is unreliable when faces have large variations in the video. Moreover, the
performance of DVC-m tends to be inferior to DVC-s especially when codes
become longer on PB, the reason for it is same with that explained in Sect. 4.2,
i.e., the number of training sub-videos become insufficient when complexity of
network becomes high.
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5 Conclusion

In this paper, we propose a multi-branch CNN architecture, which takes face
videos as inputs and outputs compact binary codes. The learned DVC achieves
promising performance compared with state-of-the-art hashing methods on two
challenging face video datasets for face video retrieval. We owe it to two aspects:
First, the integration of frame-level non-linear convolutional feature learning,
video-level modeling by temporal feature pooling and hash coding for extracting
compact video code. Second, the optimization of a smooth upper bound on
triplet loss function for hash learning. In the future, we would construct a larger
and more challenging face video dataset to train more complicated CNNs.
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